Chemical characterization of ozone formation in the Houston- Galveston area: A chemical transport model study

نویسندگان

  • Wenfang Lei
  • Renyi Zhang
  • Xuexi Tie
  • Peter Hess
چکیده

[1] An episodic simulation is conducted to characterize ozone (O3) formation and to investigate the dependence of O3 formation on precursors in the Houston-Galveston (HG) area using a regional chemical transport model (CTM). The simulated net photochemical O3 production rates, P(O3), in the Houston area are higher than those in most other U.S. urban cities, reaching 20–40 ppb hr 1 for the daytime ground NOx levels of 5–30 ppb. The NOx turnaround value (i.e., the NOx concentration at which P(O3) reaches a maximum) is also larger than those observed in most other U.S. cities. The large abundance and high reactivity of anthropogenic volatile organic compounds (AVOCs) and the coexistence of abundant AVOCs and NOx in this area are responsible for the high O3 production rates and the NOx turnaround value. The simulated O3 production efficiency is typically 3–8 O3 molecules per NOx molecule oxidized during the midday hours. The simulation reveals a RO2 peak up to 70 ppt at night, and the reactions of alkene-NO3 and alkene-O3 are responsible for more than 80% of the nighttime RO2 in the residual layer, contributing to over 70% and about 10%, respectively. Isoprene accounts for about 40% of the nighttime RO2 peak concentration. The nighttime RO2 level is limited by the availability of alkenes. Hydrolysis of N2O5 on sulfate aerosols leads to an increase of HNO3 by as much as 30–60% but to a decrease of NOx by 20–50% during the night in the lower troposphere. Heterogeneous conversion of NO2 to HONO on the surfaces of soot aerosol accelerates the O3 production by about 1 hour in the morning and leads to a noticeable increase of 7 ppb on average in the daytime O3 level. The sensitivity study suggests that the near-surface chemistry over most of the Houston metropolitan area is in or close to the NOx-VOC transition regime on the basis of the current emission inventory. Doubling AVOC emissions leads to the NOx sensitive chemistry. Biogenic VOCs contribute about 5% on the average to the total near-surface O3 in the Houston area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Evaluation of Tropospheric Ozone Formation in the Downwind of the South Pars Industrial Zone

Hydrocarbon Processing Industries (HPIs) emit large amounts of highly reactive hydrocarbons and Nitrogen Oxides to the atmosphere. Such simultaneous emissions of ozone precursors result in rapid and high yields ozone (O3) formation downwind. The climate of the Middle East has been shown to be favorable for O3 formation in summer. There are also vast activities in processing oil and gas in this ...

متن کامل

The Evaluation of Tropospheric Ozone Formation in the Downwind of the South Pars Industrial Zone

Hydrocarbon Processing Industries (HPIs) emit large amounts of highly reactive hydrocarbons and Nitrogen Oxides to the atmosphere. Such simultaneous emissions of ozone precursors result in rapid and high yields ozone (O3) formation downwind. The climate of the Middle East has been shown to be favorable for O3 formation in summer. There are also vast activities in processing oil and gas in this ...

متن کامل

Emissions Modeling of Specific Highly Reactive Volatile Organic Compounds (HRVOC) in the Houston-Galveston-Brazoria Ozone Nonattainment Area

The 2006 Texas Air Quality Study (TexAQS II) confirmed many of the results from the 2000 Texas Air Quality Study (TexAQS 2000). Both of these studies rank among the most extensive and comprehensive studies of their kind undertaken to date. Chief among many important findings was the discovery of the role played by certain light olefins in the rapid, intense formation of ozone in the Houston-Gal...

متن کامل

Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006

During the Texas Air Quality Study II (TexAQS 2006) campaign, a PEroxy Radical Chemical Amplifier (PERCA) was deployed on the NOAA research vessel R/V Brown to measure total peroxy radicals (HO2+6 RO2). Day-time mixing ratios of HO2+6 RO2 between 25 and 110 ppt were observed throughout the study area – the Houston/Galveston region and the Gulf coast of the US – and analyzed in relation to measu...

متن کامل

Slower ozone production in Houston, Texas following emission reductions: evidence from Texas Air Quality Studies in 2000 and 2006

Airborne measurements from two Texas Air Quality Study (TexAQS) field campaigns have been used to investigate changes of ozone production in Houston, Texas, from 2000 to 2006, a period of major emission reduction measures for petrochemical and other sources. Simultaneous declines in nitrogen oxides (NOx =NO+NO2) and highly reactive volatile organic compounds (HRVOCs) were observed between the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004